Skip to main content
Log in

Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nanotechnology gives immense worth in various fields through the distinctive features of nanoparticles (NPs). One of the most important applications of the nanotechnology is in the field of plant science that provides beneficial effects to plants and soil by functioning as fertilizer to enhance plant growth and productivity, antimicrobial for disease management and biosensors to monitor soil quality and plant health. Zinc oxide nanoparticles (ZnO-NPs) emerge as a potential tool to plant science giving promising aspects for better plant growth and yield, which is one of the most important solutions for the explosive world population. However, it also caused various detrimental effects in plant at high dose and duration that vary with different plants as well as with the size and shape of ZnO-NPs. Extensive research has been done to overcome the antagonist effect of ZnO-NPs, where low dose and duration of exposure are found to be beneficial in plants. Also, functionalization serves an effective method to provide stability to the NPs thereby reducing the harmful impact of ZnO-NPs in plant with the simultaneous enhancement of efficacy. Therefore, this review attempts to illustrate the uptake, distribution and the effects of ZnO-NPs in plant physiology. Furthermore, the promising aspect of ZnO-NPs in plant is also discussed, while summing up the significance of functionalized Zn-NPs in plant. This review updates the status of ZnO-NPs in plant, thereby drawing attention for renovating plant science and achieving sustainability by utilizing ZnO-NPs in the right way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem 66(33):8647–8661

    Article  CAS  PubMed  Google Scholar 

  • Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Musarrat J (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn 2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interf Sci 472:145–156

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Ahmad P (2019) Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res 26(11):11288–11299

    Article  CAS  Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31(5):537–548

    Article  CAS  PubMed  Google Scholar 

  • Amin MA, Badawy AA (2017) Metabolic changes in common bean plants in response to zinc nanoparticles and zinc Sulfate. IJISET 4.

  • Amiri H, Mousavi M, Torahi A (2016) Improving date palm (phoenix dactylifera l. cv. estamaran) calogenesis by the use of zinc oxide nanoparticles. JEBAS 4:557

    Article  CAS  Google Scholar 

  • Ancona A, Dumontel B, Garino N, Demarco B, Chatzitheodoridou D, Fazzini W, Cauda V (2018) Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials 8(3):143

    Article  PubMed Central  CAS  Google Scholar 

  • Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2012) AS1411 Aptamer Tagged PLGA-Lecithin-PEG Nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 109:2920

    Article  CAS  PubMed  Google Scholar 

  • Arslan O, Singh AP, Belkoura L, Mathur S (2013) Cysteine-functionalized zwitterionic ZnO quantum dots. J Mater Res 28(14):1947–1954

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  PubMed  Google Scholar 

  • Bala R, Kalia A, Dhaliwal SS (2019) Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J Soil Sci Plant Nutr 19(2):379–389

    Article  CAS  Google Scholar 

  • Balazova L, Balaz M, Babula P (2020) Zinc oxide nanoparticles damage Tobacco by-2 cells by oxidative stress followed by processes of autophagy and programmed cell death. Nanomaterials 10(6):1066

    Article  CAS  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  PubMed  CAS  Google Scholar 

  • Barrak H, Saied T, Chevallier P, Laroche G, Mnif A, Hamzaoui AH (2016) Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): investigation of the interactions between Phloroglucinol and ZnO@ TMSEDTA. Arab J Chem 12(8):4340–4347

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    Article  CAS  PubMed  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646

    Article  CAS  PubMed  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu G, Kumar GS, Nagarajan R, Chan-drasekaran N, Mukherjee A (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark Conditions. Aquat Toxicol 162:29–38

    Article  CAS  PubMed  Google Scholar 

  • Boonchuay P, Cakmak I, Rerkasem B, Prom-U-Thai C (2013) Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Sci Plant Nutr 59(2):180–188

    Article  CAS  Google Scholar 

  • Borisev M, Borisev I, Zupunski M, Arsenov D, Pajevic S, Curcic Z, Vasin J, Djordjevic A (2016) Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS ONE 11:0166248

    Article  CAS  Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2:919–927

    Article  CAS  PubMed  Google Scholar 

  • Brassard JD, Sarkar DK, Perron J (2012) Surface modification and functionalization of oxide nanoparticles for superhydrophobic applications. In Advanced Materials Research (Vol. 409, pp. 469–473). Trans Tech Publications.

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Liu C, Fan G, Liu C, Sun X (2019) Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ Sci Nano 6(12):3653–3669

    Article  CAS  Google Scholar 

  • Cakmak I (2008a) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2008b) Zinc deficiency in wheat in Turkey. Micronutrient deficiencies in global crop production. Springer, Dordrecht, pp 181–200

    Chapter  Google Scholar 

  • Cakmak I, McLaughlin MJ, White P (2017) Zinc for better crop production and human health. Plant Soil 411:1–4

    Article  CAS  Google Scholar 

  • Casa M, Sarno M, Paciello L, Beaumont MR, Ciambelli P (2016) Synthesis and characterization of water stable ZnO quantum dots based-sensor for nitro-organic compounds. Chem Eng Trans 47:7–12

    Google Scholar 

  • Chanu TT, Upadhyaya H (2019) Zinc oxide nanoparticle-induced responses on plants: a physiological perspective. In Nanomaterials in Plants, Algae and Microorganisms. Academic Press. 46–36.

  • Chiang CT, Roberts JT (2011) Surface functionalization of Zinc oxide nanoparticles: an investigation in the aerosol state. Chem Mater 23:5237–5242

    Article  CAS  Google Scholar 

  • Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikkanna MM, Neelagund SE, Rajashekarappa KK (2019) Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl Sci 1(1):117

    Article  CAS  Google Scholar 

  • Chung YT, Ba-Abbad MM, Mohammad AW, Benamor A (2016) Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin Water Treat 57(17):7801–7811

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Rajwade JM (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8(1):1–7

    Article  CAS  Google Scholar 

  • Das A, Das B (2019) Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants. In Abiotic and Biotic Stress in Plants. IntechOpen.

  • Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Asses 24:711–732

    Article  Google Scholar 

  • Davar F, Majedi A, Mirzaei A (2015) Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J Am Ceram Soc 98(6):1739–1746

    Article  CAS  Google Scholar 

  • Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38(1):31–39

    Article  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Dimkpa CO, White JC, Elmer WH, Torresdey JG (2017) Nanoparticle and ionic Zn promote nutrient loading of Sorghum grain under low NPK fertilization. J Agric Food Chem 65:8552–8559

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Andrews J, Fugice J, Singh U, Bindraban PS, Elmer WH, White JC (2020) Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front Plant Sci 11:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3(3):2479–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djearamane S, Lim YM, Wong LS, Lee PF (2018) Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. Peer J. https://doi.org/10.7717/peerj.4682

    Article  PubMed  PubMed Central  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci 9(3):499

    Article  CAS  Google Scholar 

  • El-Nahhal IM, Salem JK, Kuhn S, Hammad T, Hempelmann R, Al Bhaisi S (2016) Synthesis & characterization of silica coated and functionalized silica coated zinc oxide nanomaterials. Powder Technol 287:439–446

    Article  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Pozueta J (2009) Evidence for two endocytic transport pathways in plant cells. Plant Sci 177:341–348

    Article  CAS  Google Scholar 

  • Faizan M, Faraz A, Mir AR, Hayat S (2020) Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. J Plant Growth Regul 40:1–15

    Google Scholar 

  • Feng X, Yan Y, Wan B, Li W, Jaisi DP, Zheng L, Zhang J, Liu F (2016) Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate. Environ Sci Technol 50(11):5651–5660

    Article  CAS  PubMed  Google Scholar 

  • Foroutan L, Solouki M, Abdossi V, Fakheri BA, Mahdinezhad N, Gholamipourfard K, Safarzaei A (2019) The effects of Zinc oxide nanoparticles on drought stress in Moringa peregrina populations. Int J Basic Sci Med 4(3):119–127

    Article  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Fu L, Wang Z, Dhankher OP, Xing B (2020) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot 71(2):507–519

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gomez C, Obrador A, Gonzalez D, Babin M, Fernandez MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari SB, Sarrafzadeh MH, Fakhroueian Z, Shahriari S, Khorramizadeh MR (2017) Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: synthesis, characterization, and anticancer assessment. Mat Sci Eng C 79:465–472

    Article  CAS  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res Fundam Mol Mech Mutagen 774:49–58

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Grancharov SG, Zeng H, Sun S, Wang SX, Brien O, S, Murray CB, Kirtley JR, Held GA, (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 109:13030–13035

    Article  CAS  PubMed  Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501(7468):S1–S1

    Article  CAS  PubMed  Google Scholar 

  • Gulati S, Sachdeva M Bhasin KK (2018) Capping agents in nanoparticle synthesis: Surfactant and solvent system. In AIP Conference Proceedings (Vol. 1953, No. 1, p. 030214). AIP Publishing LLC.

  • Gunarathne V, Senadeera A, Gunarathne U, Biswas JK, Almaroai YA, Vithanage M (2020) Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2:1–14

    Article  Google Scholar 

  • Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D (2018) Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbial 9:2030

    Article  Google Scholar 

  • Hacisalihoglu G, Ozturk L, Cakmak I, Welch RM, Kochian L (2004) Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant Soil 259(1–2):71–83

    Article  CAS  Google Scholar 

  • Hajira K, Vaishnavi BA, Namratha MR, Shankar AG (2017) Nano zinc oxide boosting growth and yield in Tomato: the rise of “nano fertilizer era.” Int J Agr Sci 7:197–206

    Google Scholar 

  • Hao Y, Yu F, Lv R, Ma C, Zhang Z, Rui Y, Liu L, Cao W, Xing B, Choi J (2016) Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C: N ratio and plant hormones concentrations. PLoS ONE 11:0157264

    Article  Google Scholar 

  • Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Xing B (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hassan NS, Salah El Din TA, Hendawey MH, Mahdi BIH, AA, (2018) Magnetite and Zinc oxide Nanoparticles alleviated heat stress in wheat plants. Curr Nanomat 3(1):32–43

    Article  CAS  Google Scholar 

  • Hezaveh TA, Pourakbar L, Rahmani F, Alipour H (2019) Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun soil sci plan. 50(6): 698–715.

  • Hossain MA, Jahiruddin M, Khatun F (2011) Response of maize varieties to zinc fertilization. Bangladesh J Agr Res 36(3):437–447

    Article  Google Scholar 

  • Hossain A, Abdallah Y, Ali M, Masum M, Islam M, Li B, An Q (2019) Lemon-Fruit-Based Green Synthesis of Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles against Soft Rot Bacterial Pathogen Dickeya dadantii. Biomolecules 9(12):863

    Article  CAS  PubMed Central  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem 39:1–23

    CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy K, Nabeel M, Alikunhi NM, Nabikhan A (2012) In vitro synthesis of antimicrobial silver nanoparticles by mangroves, salt marshes and plants of coastal origin. Int J Biomed Nanosci Nanotechnol 2:284–298

    Article  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Daima HK (2017) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ. Chem. Lett. 1–16.

  • Karimi E (2019) Antimicrobial Activities of Nanoparticles. In Nanotechnology for Agriculture: Crop Production & Protection (pp. 171–206). Springer, Singapore.

  • Kataria S, Jain M, Rastogi A, Zivcak M, Brestic M, Liu S, Tripathi DK (2019) Role of nanoparticles on photosynthesis: avenues and applications. In Nanomaterials in Plants, Algae and Microorganisms (pp. 103–127). Academic Press.

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: Properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  • Khan R, Inam MA, Zam SZ, Park DR, Yeom IT (2018) Assessment of key environmental factors influencing the sedimentation and aggregation behavior of zinc oxide nanoparticles in aquatic environment. Water 10(5):660

    Article  CAS  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Mao C (2019) Nanoparticle-Plant Interactions: Two-Way Traffic. Small 15(37):1901794

    Article  CAS  Google Scholar 

  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2015) Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicol 9:423–432

    Article  CAS  Google Scholar 

  • Khiew P, Chiu W, Tan T, Radiman S, Abd-Shukor R, Chia C.H (2011) Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material,” in Palm Oil: Nutrition, Uses and Impacts. Nova Science. 189–219.

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim H, Hong Y, Ahn JH (2013) A study on the management of micropollutants in water system considering climate change and other potential effects. Korean J Chem Eng 51:645–654

    Article  CAS  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of Nano-Zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnol 5:135

    Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahuf AA, Kareem AA, Al-Sweedi TM, Alfarttoosi HA (2019) Evaluation the potential of indigenous biocontrol agent Trichoderma harzianum and its interactive effect with nanosized ZnO particles against the sunflower damping-off pathogen, Rhizoctonia solani. In IOP Conference Series: Earth and Environmental Science (Vol. 365, No. 1, p. 012033). IOP Publishing.

  • Landa P, Prerostova S, Petrova S, Knirsch V, Vankova R, Vanek T (2015) The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Environ Sci Technol 49(24):14537–14545

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Laware SL, Raskar S (2014) Influence of Zinc Oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Sci 3(7):874–881

    CAS  Google Scholar 

  • Le Van N, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Choi KH, Min J, Kim HJ, Jee JP, Park BJ (2017) Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials 7(11):365

    Article  PubMed Central  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhao P, Qin S, Nie Z (2018) Chemical fractions and availability of zinc in winter wheat soil in response to nitrogen and zinc combinations. Front Plant Sci 9:1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu DY, Liu YM, Zhang W, Chen XP, Zou CQ (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Front Plant Sci 10:426

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Serrano A, Olivas RM, Landaluze JS, Camara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56

    Article  CAS  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59

    Article  CAS  Google Scholar 

  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticlesda review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ballesta M, Gil-Izquierdo A, Garcia-Viguera C, Dominguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “Smart-Foods” for health. Foods 7:72

    Article  PubMed Central  CAS  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS ONE 10(5):e0126275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotox Environ Safe 88:48–54

    Article  CAS  Google Scholar 

  • Moharekar S, Raskar P, Wani A, Moharekar S (2014) Synthesis and comparative study of zinc oxide nanoparticles with and without capping of pectin and its application. World J Pharm Pharm Sci 3(7):1255–1267

    Google Scholar 

  • Moinuddin Imas P (2010) Effect of zinc nutrition on growth, yield and quality of forage sorghum in respect with increasing potassium application rates. J Plant Nutr 33:2062–2081

    Article  CAS  Google Scholar 

  • Mori A, Kirk GJ, Lee JS, Morete MJ, Nanda AK, Johnson-Beebout SE, Wissuwa M (2016) Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-induced changes in the rhizosphere. Front Plant Sci 6:1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(154):163

    Google Scholar 

  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3:1033

    Google Scholar 

  • Nejabatdoust A, Salehzadeh A, Zamani H, Moradi-Shoeili Z (2019) Synthesis, characterization and functionalization of ZnO nanoparticles by glutamic acid (Glu) and conjugation of ZnO@ Glu by Thiosemicarbazide and its synergistic activity with ciprofloxacin against multi-drug resistant Staphylococcus aureus. J Clust Sci 30(2):329–336

    Article  CAS  Google Scholar 

  • Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195

    Article  CAS  Google Scholar 

  • Nielsen FH (2012) History of zinc in agriculture. Adv Nutr 3(6):783–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol 47(1):341–352

    Article  CAS  PubMed  Google Scholar 

  • Onyekachi OG, Boniface OO, Gemlack NF, Nicholas N (2019) The Effect of Climate Change on Abiotic Plant Stress: A Review. In Abiotic and Biotic Stress in Plants. IntechOpen.

  • Oukarroum A, Halimi I, Siaj M (2019) Cellular responses of Chlorococcum Sp. Algae exposed to zinc oxide nanoparticles by using Flow Cytometry. Water AirSoil Poll. 230(1):1

    Article  CAS  Google Scholar 

  • Pacheco I, Buzea C (2018) Nanoparticle uptake by plants: beneficial or detrimental? Phytotoxicity of nanoparticles. Springer, Cham, pp 1–61

    Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010a) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Patra P, Mitra S, Debnath N, Pramanik P, Goswami A (2014) Ciprofloxacin conjugated zinc oxide nanoparticle: a camouflage towards multidrug resistant bacteria. B Mater Sci 37(2):199–206

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa J, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  PubMed  Google Scholar 

  • Petosa AR, Rajput F, Selvam O, Ohl C, Tufenkji N (2017) Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res 111:10–17

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Schimel JP (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109(37):E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1228. https://doi.org/10.3389/fpls.2016.01288

    Article  Google Scholar 

  • Ramanathan A (2019) Toxicity of nanoparticles_ challenges and opportunities. Appl Microsc 49(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Peralta-Videa NJ, JR, Gardea-Torresdey JL, (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Rojas O (2020) Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). Weather Clim Extrem 27:1084

    Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  PubMed  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnology 15(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. https://doi.org/10.1155/2014/925494

    Article  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70

    Article  CAS  Google Scholar 

  • Sanjay SS, Pandey AC, Singh M, Prasad MS (2015) Effects of functionalized ZnO nanoparticles on the phytohormones: growth and development of Solanum melongena L. (Brinjal) plant. World J Pharm Res 5:1990–2009

    Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology. https://doi.org/10.3109/17435390.2015.1048326

    Article  PubMed  Google Scholar 

  • Septiani NLW, Yuliarto B, Iqbal M (2017) Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent. In IOP Conference Series: Materials Science and Engineering (Vol. 202, No. 1, p. 012070). IOP Publishing.

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifan H, Moore J, Ma X (2020) Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol Environ Saf 191:110177

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Rajput J, Kaith B, Kaur SM, Sharma S (2010) Synthesis of zno nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519:1224–1229. https://doi.org/10.1016/j.tsf.2010.08.073

    Article  CAS  Google Scholar 

  • Sharmila G, Muthukumaran C, Sandiya K, Santhiya S, Pradeep RS, Kumar NM, Suriyanarayanan N, Thirumarimurugan M (2018) Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J Nanostruct Chem 8(3):293–299

    Article  CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6:241–248

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400

    Article  CAS  Google Scholar 

  • Singh S, Husen A (2019) Role of nanomaterials in the mitigation of abiotic stress in plants. Nanomaterials and Plant Potential. Springer, Cham, pp 441–471

    Chapter  Google Scholar 

  • Singh A, Prasad SM, Singh S (2018) Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environ Nanotechnol Monit Manag 9:42–49

    Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer cham, Switzerland, pp 81–101

    Chapter  Google Scholar 

  • Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites australis: leaf-type-dependent responses. Environ Sci Pollut Res Int 23:8539–8545

    Article  CAS  PubMed  Google Scholar 

  • Soni J, Koser A (2015) Synthesis of ZnO nanoparticle using different concentration of capping agent. Int J Technol Innovat Res 16:1–7

    Google Scholar 

  • Soumya KR, Snigdha S, Sugathan S, Mathew J, Radhakrishnan EK (2017) Zinc oxide–curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative Staphylococci. 3 Biotech 7(4):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza RCD, Haberbeck LU, Riella HG, Ribeiro DH, Carciofi BA (2019) Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz J Chem Eng 36(2):885–893

    Article  CAS  Google Scholar 

  • Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol 35:1286–1304

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah LV, Prasad TNKV, Krishna TG, Shudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64:3778–3788

    Article  CAS  PubMed  Google Scholar 

  • Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X (2020) Nano-zno-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci 21(3):782

    Article  CAS  PubMed Central  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38(2):739–752

    Article  CAS  Google Scholar 

  • Tarafdar J, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agri Res 3:257–262

    Article  CAS  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tewari S, Mishra A (2018) Flooding stress in plants and approaches to overcome. In Plant Metabolites and Regulation Under Environmental Stress. Academic Press. 355–366

  • Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) A system-ofsystems approach as a broad and integrated paradigm for sustainable engineered nanomaterials. Sci Total Environ 511:595–607

    Article  CAS  PubMed  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tsao TM, Chen YM, Wang MK (2011) Origin, separation and identification of environmental nanoparticles: a review. J Environ Monitor 13(5):1156–1163

    Article  CAS  Google Scholar 

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Sanaullah M (2020) Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 137778.

  • Valli JS, Vaseeharan B (2012) Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Mater Lett 82:171–173

    Article  CAS  Google Scholar 

  • Venkatachalam PN, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Kumar N, Upadhyay LSB, Sahu R, Dutt A (2017) Fabrication and characterization of cysteine-functionalized zinc oxide nanoparticles for enzyme immobilization. Anal Lett 50(11):1839–1850

    Article  CAS  Google Scholar 

  • Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J (2019) Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ Sci Technol 53(8):4235–4244

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Gao M, Ma B, Xi M, Kong F (2019) Size-dependent effects of ZnO nanoparticles on performance, microbial enzymatic activity and extracellular polymeric substances in sequencing batch reactor. Environ. Pollut. 113596.

  • Wilson N (2018) Nanoparticles: environmental problems or problem solvers? Bioscience 68(4):241–246

    Article  Google Scholar 

  • Wu J, Wang T (2020) Synergistic Effect of Zinc Oxide Nanoparticles and Heat Stress on the Alleviation of Transcriptional Gene Silencing in Arabidopsis thaliana. Bull Environ Contam Toxicol 104(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KY, Doxey S, McLean JE, Britt D, Watson A, Al Qassy D, Anderson AJ (2018) Remodeling of root morphology by CuO and ZnO nanoparticles: Effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96(3):175–186

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:1–7

    Article  Google Scholar 

  • Yusof HM, Mohamad R, Zaidan UH (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10(1):57

    Article  CAS  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res Int 22:11109–11117

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang N, Fu H, Chen T, Liu S, Zheng S, Zhang J (2017) Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor. Bioresource Technol 243:93–99

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process 15:260–266

    CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10:713–717

    Article  CAS  Google Scholar 

  • Zoufan P, Baroonian M, Zargar B (2020) ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environ Sci Pollut 27:1–13

    Google Scholar 

Download references

Acknowledgements

TCT and HU greatly acknowledge the financial support from the Department of Science and Technology (DST), Government of India, under WOS-A scheme (Reference No: SR/WOS-A/LS-159/2017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrishikesh Upadhyaya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by A. Krolicka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thounaojam, T.C., Meetei, T.T., Devi, Y.B. et al. Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiol Plant 43, 136 (2021). https://doi.org/10.1007/s11738-021-03307-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03307-0

Keywords

Navigation